Back to Top

Concentrating Photovoltaic modules using advanced technologies and cells for highest efficiencies

Germanium has long been a popular material for integrated circuits. Outside the core area of electronic devices, an EU-funded project is showing its great potential as a substrate to lead next-generation multi-junction solar cells.

The world is looking towards renewable energy such as solar power to reduce greenhouse gas emissions and solve the looming energy crisis. However, developing high-efficiency solar cells that can convert a significant amount of sunlight into electrical energy at very low costs remains a significant challenge.

Concentrator photovoltaics that use optics to focus Sun’s power on high-efficiency multi-junction solar cells plays a large role in boosting solar power generation. This technology requires sub cells with different band gaps to absorb different parts of the solar spectrum to realise high theoretical energy conversion efficiencies. High-performance mirrors or lenses can focus sunlight onto these tiny cells more than 500 times compared to conventional flat-plate photovoltaics. However, this technology requires further cost reduction.

Perfect crystal matching

Combining two technologies is a practical step for making concentrator photovoltaic systems more competitive with other forms of energy generation. This means to take a low-cost wafer and use it as a basis for forming many highly efficient multi-junction devices featuring various compound semiconductor layers.

“Matching the atomic spacing of successive layers is a crucial element when combining materials with certain band gap energies” notes Dr Gerald Siefer project coordinator of the EU-funded project CPVMatch. As he further explains several methods including metamorphic growth and wafer bonding can be used to overcome the lattice mismatch. However use of materials with the same lattice parameter is preferable to propelling multi-junction cells to higher efficiencies at low cost.

Project researchers performed a successful proof of concept by using a germanium wafer and then adding a lattice-matched silicon-germanium-tin (SiGeSn) structure to form a 1 eV junction. Subsequent addition of III-V materials will allow creating upper junctions leading to device architecture that can deliver very high efficiencies. “This is the first time that a high-quality IV semiconductor element – SiGeSn – is epitaxially grown on a germanium substrate on the same growth reactor as III-V semiconductor elements,” adds Siefer.

Costing less than its counterpart

Very high-efficiency photovoltaic cells partly implement indium phosphide based (InP) substrates to efficiently convert solar radiation into electrical energy. “The world record efficiency of multi-junction solar cells comprising InP as a substrate is 46 %. Still, this material is more expensive than germanium,” notes Siefer.

The new CPVMatch four-junction solar cell with a germanium substrate achieved 42.6 % efficiency. The project successfully developed and demonstrated other technical building blocks that – put together – will increase cell efficiency to 46 %.

Overcoming the drawbacks of standard lenses

Most concentrator photovoltaic modules are using the so-called silicone-on-glass (SoG) lenses. Although these lenses are cheap, they introduce chromatic aberration and their performance depends significantly on ambient temperature. Researchers experimented with achromatic lenses to reduce distortion. Despite their potential to yield a very high-performance device, they are expensive.

To skirt SoG limitations and minimise costs, researchers focused on a cheap manufacturing process for achromatic lenses as well as smart, highly compact mirror-based concentrator photovoltaic modules. Both boast a host of advantages compared to standard lenses: no issues with chromatic distortion coupled with higher solar conversion efficiencies.

CPVMatch demonstrated concepts that cut solar cell costs and boosted efficiency to ensure that concentrator photovoltaic systems become more competitive in the future. “High-concentration photovoltaic systems can achieve efficiency levels that flat-plate photovoltaics will never reach. What’s more, their demonstrated lower carbon footprint – ranging from 16 to 18 grammes of CO2 per kilowatt-hour of electricity produced – is of paramount importance for decarbonising the energy system” adds Siefer.

Reference source: Concentrating Photovoltaic modules using advanced technologies and cells for highest efficiencies

Κατηγορία Ερευνητή: 

Δημοφιλη

Online Εφαρμογές ΔΠΘ

Συγγραφή Βιογραφικού
Σύνταξη Επιχειρηματικού Σχεδίου

Χρησιμοποιήστε τις Online Eφαρμογές που έχει αναπτύξει το Γραφείο Διασύνδεσης Δ.Π.Θ. για

Η Ευρωπη σου

Η Ευρώπη σου

Η διαδικτυακή πύλη «Η Ευρώπη σου» παρέχει στους πολίτες και στις επιχειρήσεις πληροφορίες σχετικές με τα δικαιώματά τους και τις προσφερόμενες ευκαιρίες στην Ε.Ε..

Εκδοσεις Ε.Ε.

Συλλογή από Εκδόσεις της Ε.Ε.

Erasmus Traineeship

Εύρεση Φορέων Erasmus Traineeship

Αναζητήστε φορείς για Erasmus Traineeship

Followme

followme
  • Twitter
  • Facebook
  • Linkedin
  • Mixcloud
  • YouTube

Newsletter

Συμπληρώστε το e-mail σας και θα λαμβάνετε περιοδικά το Δελτίο Τύπου της Ραδιοφωνικής Εκπομπής "Διασυνδεθείτε".

Παρακαλώ, όσοι διαθέτετε λογαριασμό e-mail του Δ.Π.Θ μην τον χρησιμοποιείτε για την εγγραφή σας στο newsletter της Δομής Απασχόλησης & Σταδιοδρομίας του Δ.Π.Θ.

Εκπομπη "Η Ώρα της Ευρώπης"

Το Europe Direct Ξάνθης εκμπέμπει ραδιοφωνικά κάθε Πέμπτη στις 12

Ευρωπαϊκη Ένωση

Χρήσιμοι σύνδεσμοι για θέσεις εργασίας και θέσεις πρακτικής άσκησης στην Ευρωπαϊκή Ένωση.
Η ΕΕ χρηματοδοτεί ένα ευρύ φάσμα έργων και προγραμμάτων σε διάφορους τομείς.
Η Ε.Ε. παρέχει πληροφόρηση για τις Υπηρεσίες που προσφέρει.

Ελληνικό Δίκτυο Ορολογίας

To ΔΠΘ είναι θεσμικό μέλος του Ελληνικού Δικτύου Ορολογίας.

Δημοσκόπηση

Απευθυνθήκατε τελευταία σε κέντρο πληροφόρησης Europe Direct; Θέλουμε να μάθουμε τις εντυπώσεις σας!